Journal of Endocrinology

 Dexamethasone increases production of C-type natriuretic peptide in the sheep brain

Although C-type natriuretic peptide (CNP) has high abundance in brain tissues and cerebrospinal fluid (CSF), the source and possible factors regulating its secretion within the central nervous system (CNS) are unknown. Here we report the dynamic effects of a single IV bolus of dexamethasone or saline solution on plasma, CSF, CNS and pituitary tissue content of CNP products in adult sheep, along with changes in CNP gene expression in selected tissues. Both CNP and NTproCNP (the amino-terminal product of proCNP) in plasma and CSF showed dose-responsive increases lasting 12–16 h after dexamethasone, whereas other natriuretic peptides were unaffected. CNS tissue concentrations of CNP and NTproCNP were increased by dexamethasone in all of the 12 regions examined. Abundance was highest in limbic tissues, pons and medulla oblongata. Relative to controls, CNP gene expression (NPPC) was upregulated by dexamethasone in 5 of 7 brain tissues examined. Patterns of responses differed in pituitary tissue. Whereas the abundance of CNP in both lobes of the pituitary gland greatly exceeded that of brain tissues, neither CNP nor NTproCNP concentration was affected by dexamethasone, despite an increase in NPPC expression. This is the first report of enhanced production and secretion of CNP in brain tissues in response to a corticosteroid. Activation of CNP secretion within CNS tissues by dexamethasone, not exhibited by other natriuretic peptides, suggests an important role for CNP in settings of acute stress. Differential findings in pituitary tissues likely relate to altered processing of proCNP storage and secretion.